

155 South 1452 East Room 380

ICSE

Salt Lake City, Utah 84112

■1-801-585-1233

Integrated Oxygen Production and CO₂ Separation through Chemical Looping Combustion with Oxygen Uncoupling

Project DE-FE0025076

Kevin J. Whitty, JoAnn S. Lighty, Andrew Fry

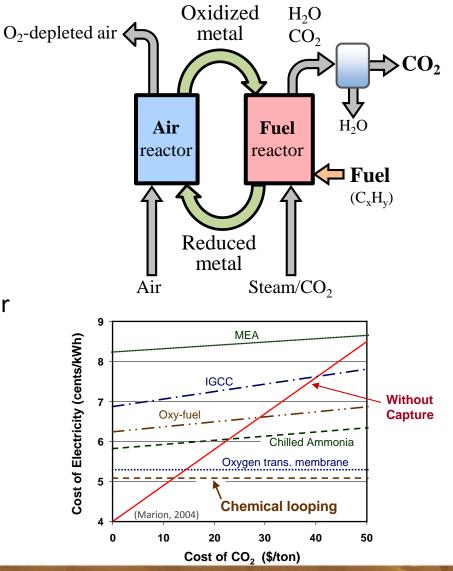
Presenter: Matthew A. Hamilton

The University of Utah

2016 NETL CO₂ Capture Technology Project Review Meeting Sheraton Station Square, Pittsburgh, PA August 8-12 2016

Outline

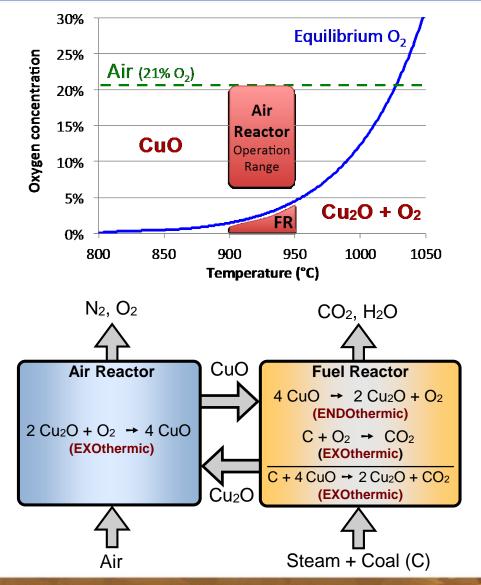
- Project overview
- Technology background
- Fechnical approach / project scope
- Progress and current status of project
- Future plans


2

Project Overview

Participants:		THE UNIVERSITY OF UTAH	Amaron Energy					
Funding:	Source	University of Utah	Amaron Energy	TOTAL				
	DOE	\$ 1,597,665	\$ 282,655	\$ 1,880,320				
	Cost share	\$ 399,416	\$ 70,664	\$ 470,080				
	TOTAL	\$ 1,997,081	\$ 353 <i>,</i> 319	\$ 2,350,400				
Project Dates:	September 1, 2015 – August 31, 2017							
Objectives:	Advance chemical looping combustion with oxygen uncoupling (CLOU) technology to pilot scale (NETL TRL 5) through system scale-up, operation of a 200 kW process development unit, process modeling and reactor simulation							

Technology Background: Chemical Looping Combustion


- CLC achieves in situ air separation by using a metal to transport oxygen from air reactor to fuel reactor
- Fuel (e.g. natural gas, coal) fed to fuel reactor is indirectly combusted by oxygen on oxidized metal
- Metal returns to reduced state in fuel reactor and "loops" back to air reactor
- Overall balance same as for conventional combustion
- Economic evaluations indicate CLC yields lowest COE of any CO₂-capture technology

Technology Background: Chemical Looping with Oxygen Uncoupling (CLOU)

$Cu_2O(s) + \frac{1}{2}O_2(g) \rightleftharpoons 2CuO(s)$

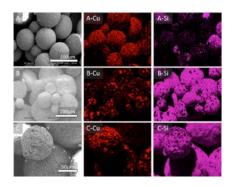
- Copper is one of few metals for which oxidation equilibrium (Cu₂O/CuO) lies within CLC operating temperatures.
- Cu₂O is oxidized in air reactor
- CuO spontaneously releases O₂ in fuel reactor due to low O₂ partial pressure
- Released O₂ reacts with solid coal char, converting more than 50x faster than with non-CLOU oxygen carriers

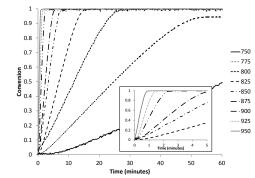
Technology Background: Previous Research and Development

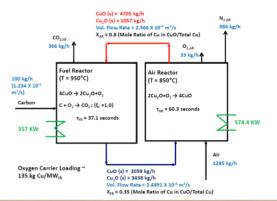
CLC intensively researched worldwide

- UofU researching since 2007
- 10 projects totaling \$5.2 million

Oxygen carrier development


- Focus on <u>inexpensive</u> copper-based carriers with <u>scalable</u> production
- Dozens of alternatives tested
- Current focus is CuO-on-SiC


Reactor and process development


- Fundamental studies of CLOU reaction kinetics
- Lab-scale experiments of coal conversion
- Design and initial construction of 200 kW PDU

Process modeling and reactor simulation

- Aspen Plus modeling of CLC system
- Barracuda VR[®] modeling of integrated fluidized bed system

Technical Approach

Three major research areas

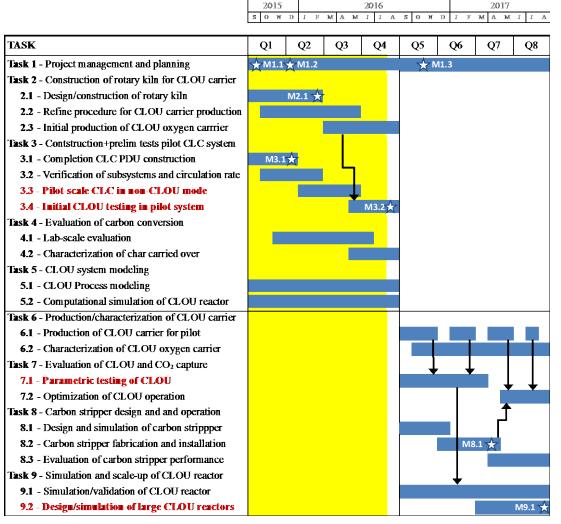
- 1. Scale up of CLOU oxygen carrier production
- 2. CLOU Experiments
 - 200 kW PDU
 - 10 kW bench-scale
- 3. System modeling and reactor simulation

Performance targets

- CO₂ capture (target min. 90%)
- CO₂ purity (target min. 95%)
- Coal conversion (target min. 99%)

Work plan / Tasks

- 1. Project management
- 2. Construction of pilot-scale rotary kiln for carrier production
- 3. Complete construction/initial testing of pilot-scale CLC system
- 4. Evaluation of carbon conversion in CLOU environment
- 5. CLOU system modeling
- 6. Production and characterization of CLOU carrier particles
- 7. Evaluation of CLOU performance and CO₂ capture at pilot scale
- 8. Carbon stripper design and operation
- 9. Design of pilot/demo scale CLOU reactors


Project Scope (Project Management Plan)

Technical milestones

- 2.1 Complete pilot rotary kiln
- 3.1 Complete CLC PDU
- 3.2 Start CLOU testing
- 8.1 Carbon stripper installed
- 9.1 Large CLC system design
- Success criteria focused on pilot system
 - Key operation steps (tasks in red) require that specific performance can be achieved

Technical risks

- CLOU carrier unsuitable
 - Target lower Cu loading
- Inadequate pilot performance
 - Component redesign
- Excessive carrier attrition/loss
 - Reduce velocity, produce more carrier, find alternates

Progress and Current Status: Scale-up of CLOU Oxygen Carrier Production

Procedure

- Incipient wetness with copper nitrate
- Current support: SiC
 - Best based on previous screening
- Research focuses on identifying optimum production "recipe"
 - Cu(NO₃)₂ concentration
 - Number of additions
 - Calcining time
 - Solvent
 - Support pretreat

Equipment

- Rotary evaporator for screening
- Three scales of rotary kiln
 - 1 kg lab scale
 - 10 kg bench scale
 - 100 kg pilot built by Amaron Energy

System	Туре	Capacity	Heating	Max T	Length	Diam
RV-1	Rotary evap	1 kg	Water bath	95°C	n/a	0.15 m
RK-1	Rotary kiln	1 kg	Elec Inductive	800°C	0.15 m	0.1 m
RK-10	Rotary kiln	10 kg	Elec radiative	350°C	0.8 m	0.2 m
RK-100	Rotary kiln	100 kg	Natural gas	500°C	1.4 m	0.4 m

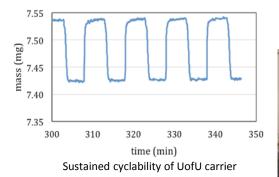
RK-1 lab-scale induction kiln

RK-10 bench-scale rotary kiln

RK-100 oxygen carrier production kiln

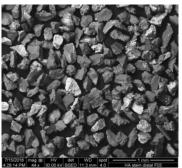
Progress and Current Status: Scale-up of CLOU Oxygen Carrier Production (2)

Characterization


- TGA for oxygen loading/rates
- BET for available surface area
- SEM for morphology
- Crush strength
- Lab-scale fluidized bed for longterm performance in a cycling fluidized bed reactor

Current Status

- Over 35 different carriers produced and characterized
- Test batch of 50 kg CuO-on-SiC successfully produced in RK-100 pilot kiln

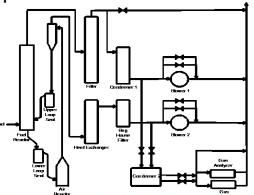


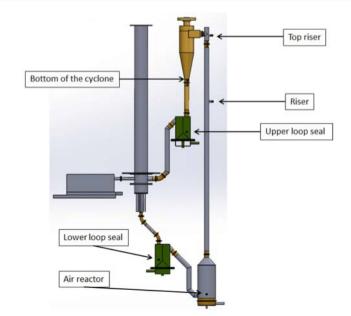
TGA for oxygen capacity and rate tests

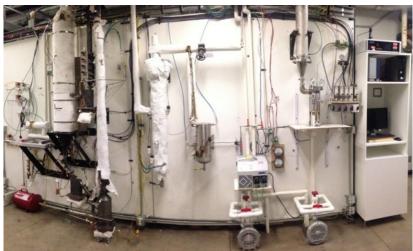
BET surface area analyzer

CuO-on-SiC oxygen carrier

Lab-scale fluidized bed system

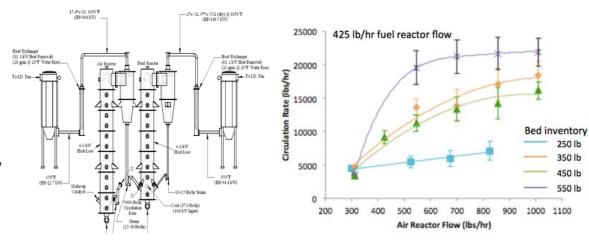

Progress and Current Status: CLOU Experiments and Process Development


Two primary chemical looping reactor systems


- 10 kW bench-scale
- 200 kW semi-pilot scale

10 kW_{th} bench-scale system

- Electrically heated
- 1.5 kg/hr coal feed rate
- Bubbling bed fuel reactor
- Bubbling bed air reactor
- Riser to lift particles to cyclone
- Used for testing carrier and char properties

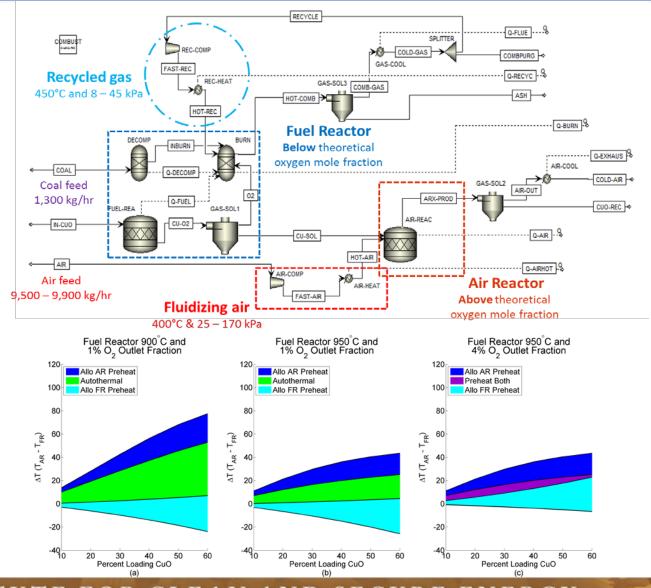

Progress and Current Status: 200 kW_{th} Process Development Unit

PDU Design

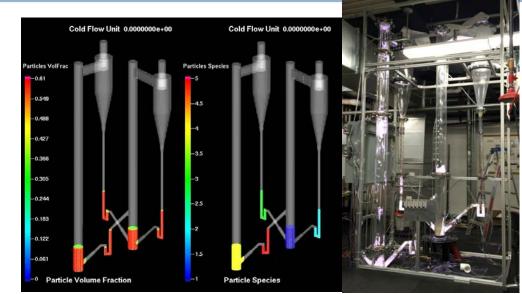
- Two interconnected CFBs
- Refractory-lined
- Electric + gas air/steam preheat
- Approx. 175 kg bed inventory

Status

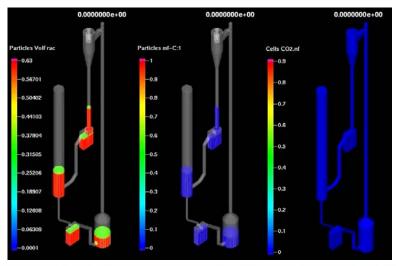
- Construction complete
 - Some rebuilds/repairs were necessary
- Function of subsystems has been confirmed
- Oxygen carrier circulation rates to 12 tons/hr ilmenite achieved
- CLC testing with gas in progress; coal starting soon



Progress and Current Status: Chemical Looping Process Modeling


- Autothermal: Both reactors are exothermic. Energy transferred from:
 - Reactions
 - Oxygen carrier heat capacity
 - Heating gases

Allothermal: At least one reactor requires external heating (e.g. preheating the fluidizing gas)



Progress and Current Status: Chemical Looping Reactor Simulation

- Using CPFD Barracuda VR[®]
- Models of 10 kW bench-scale, 200 kW pilot-scale reactors, and cold-flow unit
- Simulations include
 - hydrodynamics
 - heat transfer
 - Oxygen carrier chemistry/kinetics
 - Coal combustion chemistry/kinetics
- Plexiglas cold-flow model of UofU PDU to help validation
- Understanding from simulations has been valuable in starting up and interpreting behavior of pilot-scale system

Cold-flow model of UofU PDU

Progress and Current Status: Significant Accomplishments

Successful scale-up of CLOU oxygen carrier production

- Can now produce enough material for PDU operation
- Initial batches of well-performing carrier to 20% CuO loading produced

Successful commissioning of 200 kW PDU

- All systems now function properly
- Measured oxygen carrier circulation rates exceed design
- Already 200+ hours of hot operation with circulation

Successful development of PDU simulation model

- Incorporation of kinetics for oxygen carrier reactions
- Incorporation and improvement of coal combustion reaction kinetics
- Over 20 different conditions have been simulated, each with at least 60 seconds of operation

15

Future Plans

This project

- Produce CuO-based CLOU carrier for PDU testing
 - Initial batch targets 20% CuO to ensure no agglomeration
 - Eventually target 40-45% CuO to increase load
- Parametric testing of PDU with CuO (CLOU) carrier and coal
 - Vary coal, coal particle size, air reactor flow rate (circulation rate),
 - Measure CO₂ capture, CO₂ purity, fuel conversion, overall performance
 - Design, install and test carbon stripper to improve coal conversion and CO₂ capture.
- Advance computational simulation
 - Validate simulation of PDU with operational data
 - Simulate larger (e.g. 10 and 100 MW) reactors

Future development

- Continued operation and experience with PDU
- Pursue opportunities for larger pilot (3-10 MW) system

16

Acknowledgments

Thanks to DOE for sponsoring this work specifically Steven Richardson for his work as the DOE Program manager

Thanks to the Kyle O'Malley and Kirsten Merrett the other graduate students involved

Thanks to Dennis Balic the engineer working on the process development unit

Thanks to the undergraduate students and other staff at the IGCRF that have been involved

